
Industrial Experiences from
Multi-Paradigmatic Modelling of Signal Processing

Håkan Burden
Computer Science

University of Gothenburg
Gothenburg, Sweden

hakan.burden@gu.se

Rogardt Heldal
Software Engineering
Chalmers University of

Technology
Gothenburg, Sweden

heldal@chalmers.se

Martin Lundqvist
Baseband Research

Ericsson AB
Gothenburg, Sweden

martin.lundqvist@ericsson.com

ABSTRACT
Embedded software is often composed of interacting do-
mains. A common problem is that the implementation in-
tertwines the different domain solutions with each other and
the platform-specific details. The result is a code mass that
is hard to understand, maintain and reuse. We report on an
effort to overcome these problems by using a domain-specific
executable modelling language for each included domain.
The application was delivered for the Ericsson LTE-A uplink
test bed as part of the 4G telecommunications system that
was presented at the Mobile World Congress in Barcelona,
February 2011. The requirements for the delivered software
included efficient real-time performance for signal processing
on new hardware as well as a firm non-negotiable delivery
deadline. Our results show that the chosen modelling lan-
guages allowed independent implementation and validation
of each domain. Neither did the integration of the separate
solutions imply additional problems.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Do-
main engineering ; I.6.5 [Simulation and Modeling]: Mo-
del Development—Modeling methodologies

General Terms
Languages, Performance.

Keywords
Executable Software Models, Digital Signal Processing, Te-
lecommunications Industry, Case Study

1. INTRODUCTION
Embedded software applications in industry are often com-

posed of an interacting set of solutions to problems orig-
inating from different domains. Although these problem

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

domains may be naturally separated, and initially speci-
fied by different expert designers using different appropri-
ate methods, the actual implementation of the combined
application is often delegated to programmers using gen-
eral program languages. The programmers are forced to
add program language-dependent details in their manually
produced code, including optimizations for the current hard-
ware. The result is a mix-up of the desired functionality and
structure of the system together with the hardware-specific
details, all intertwined in the syntax of the program lan-
guages used for implementation.

We decided to explore the possibilities for using multiple
modelling languages in implementing the channel estimation
of the LTE-A uplink test bed of a 4G telecommunication
system [8]. The requirements on such an application in-
cludes unconditional real-time performance for calculations
on synchronous data and the contextual determination of
when signals shall be sent and processed as well as opera-
tion reliability.

In our contribution we show that it is possible to approach
such a system by identifying its different domains - based on
their main properties and respective needs for expression -
and the interfaces between them. Each domain can then
be implemented independently by using an executable and
translatable modelling language.

The related work is presented in section 2, followed by our
motivation in section 3. In section 4 we give the necessary
background about the investigated domains and what we
consider suitable modelling languages for each domain. In
section 5 the delivered application is described together with
the implementation process. The outcome of the process is
then found in section 6 which is followed by our discussion,
section 7. Finally, we conclude and propose new questions
for further research in section 8.

2. RELATED WORK
A substantial part of research has been reported for com-

bining multiple modelling or domain-specific languages from
the perspective of meta-modelling (e.g. see [5, 16, 20, 24,
27, 29]).

Another approach to multi-paradigmatic modelling is re-
ported by Lochmann and Hessellund [18]. They give a schema
for working with multiple modelling languages where the
first step is to identify the different domains and their con-
nections. Then the connections are specified and finally the
domains and the connections are implemented. In this way
the different languages do not need to be combined on the

level of metamodels. A challenge for Lochmann and Hes-
sellund is to ensure referential integrity across the connec-
tions and domains. Hessellund et al. [15] have developed a
tool that was used for this purpose in an industrial project,
SmartEMF. A similar approach is taken by Nentwich et al.
[21], Denton et al. [9] and Warmer and Kleppe [30].

Motorola has applied model-driven engineering to describe
the asynchronous message passing in a telecommunication
system [7]. They discuss the challenges when different views
of the system are integrated and how these can be overcome
by using an aspect-oriented approach [11]. The Motorola
authors implemented the signal processing by hand-written
code.

3. MOTIVATION
In order to implement the LTE-A uplink channel estima-

tor we decided to use two different modelling languages;
a functional language to model the algorithms of the sig-
nal processing and an object-oriented language to model
the execution flow of the signals. The different paradigms
of the modelling languages will, ideally, ensure that the
platform-independent models are closer to the requirements
and domain descriptions than in the case of using one gen-
eral modelling language [20]. In this way the functionality
and structure of the domain implementations are to be free
of platform-specific intrusions.

The setup poses two challenges:

1. To which extent is it possible to develop the signal
processing and the flow of execution independently of
each other?

2. How can the sub-solutions be integrated into one ap-
plication running on the designated hardware?

Before we explore the challenges further we need to further
define what we mean by a domain.

4. BACKGROUND
After defining what we mean by domain we describe the

two domains in the LTE-A uplink channel estimator, the
signal processing domain and the control domain.

4.1 Domain Definition
In our context a domain represents one subject matter

with a set of well-defined concepts and characteristics [25]
that cooperate to fulfill the interactions of the domain [23].
This definition of a domain is in line with what Giese et al.
[12] call a horizontal decomposition and ensures the separa-
tion of concerns between the domains [10] as well as informa-
tion hiding [22]. Furthermore, each domain can be realised
as one or more software components [23].

4.2 The Signal Processing Domain

4.2.1 Signal Processing
What is often referred to within Ericsson AB as the sig-

nal processing domain, is characterized by a data centralized
processing flow, where program state changes and external
interactions are kept at a minimum, while more or less fixed
and carefully optimized algorithms filter, convert or other-
wise calculate on incoming data in a pre-deterministic way.
In telecommunication applications, signal processing plays

DCT-2n =

[
cos k(2l+1)π

2n

]
0≤k,l<n

dct2 :: DVector Float -> DVector Float
dct2 xn = mat ** xn
where mat =
indexedMat (length xn) (length xn)
(\k l -> dct2nkl (length xn) k l)

dct2nkl n k l =
cos ((k’*(2*l’+1)*3.14)/(2*n’))
where (n’,k’,l’) = (intToFloat n,

intToFloat k,
intToFloat l)

Figure 1: The Discrete Cosine Transform matrix in
mathematical and Feldspar notation.

a crucial role, and the necessary algorithms have to be effi-
cient in order to achieve the performance required on speed
and quality.

In the LTE-A uplink testbed project, the signal processing
more precisely consisted of multiple-user, multiple- antenna
uplink data processing according to the 3GPP1 standard,
and our modelling mainly implicated the channel estimation
parts.

4.2.2 Implementing Signal Processing
Today, using general high level languages, such as C or

similar, there is often a large gap between the algorithm
design and the implementation of the same. Due to this
gap, the implementation of the signal processing algorithms
can be indirect and unnecessarily complicated, and therefore
error prone.

Feldspar is a domain-specific language currently devel-
oped by Chalmers University of Technology and Ericsson
for signal processing [2]. The purpose is to limit the gap
between the mathematical notation used in the design of
signal processing algorithms and their implementation by
using a functional modelling paradigm. Feldspar is embed-
ded in Haskell2, a third generation functional programming
language, and tries to remain true to the Haskell syntax
[3]. One important aspect of Feldspar is that it has no side-
effects.

A Feldspar program can be evaluated directly via a Haskell
interpreter, or be transformed into C by the accompanying
code generator. In Figure 1 there is an example of a math-
ematical matrix multiplication used in signal processing to-
gether with the equivalent Feldspar definition, taken from
Axelsson et al. [2].

4.3 The Control Domain

4.3.1 Controlling the Flow of Execution
We define the term Control Domain as a part of a software

application controlling the flow of execution; responding to
external communication and perhaps governed by internal
state machinery. The control domain itself does not contain
any complicated algorithmic complexity, instead it controls
the order in which things are executed; in our case receiv-
ing and sending signals, initiating signal processing routines,

1http://www.3gpp.org/specifications/
2http://www.haskell.org/

and collecting their results.

4.3.2 Executable and Translatable UML
Our previous experiences at Ericsson show that an object-

oriented modelling language is well suited for implementing
the solutions needed for the control domain; modelling the
interaction with surrounding applications in the system and
managing the control and exchange of data between the dif-
ferent parts of the signal processing domain, regardless of
implementation language chosen for those parts. Similar
experiences from the telecommunications industry are re-
ported on by Weigert and Weil [31].

Executable and Translatable UML (xtUML; [19, 23, 28])
evolved from merging the Shlaer-Mellor method [25] with
the Unified Modeling Language (UML3).

xtUML has three kinds of diagrams, together with a tex-
tual action language. The diagrams are component dia-
grams, class diagrams and state machines. There is a clear
hierarchical structure between the different diagrams; state
machines are only found within classes, and classes are only
found within components. Component diagrams have more
or less the same syntax as in UML, but both class diagrams
and state machines are more restricted in their syntax in
comparison to UML. The action language is integrated with
the graphical diagrams by the shared metamodel. At the
time of our project the metamodel was propriety with re-
strictions on how it could be extended. The number of con-
structions in the metamodel is deliberately kept small so
that there is always an appropriate correspondence in the
platform-specific model. This also makes it an unsuitable
language for complex algorithms since it has a very limited
set of datastructures and only fundamental mathematical
notations.

Since xtUML models have unambiguous semantics valida-
tion can be performed within the xtUML tool by an inter-
preter. During execution all changes of the association in-
stances, attribute values and class instances are shown [17],
as well as the change of state for classes with state machines,
in the object model.

4.4 The Interface between the Domains
The actual processing of incoming data was - however

static regarding the contents and order of algorithms in-
volved - completely dynamic depending on the current con-
figuration. In one instant, a certain configuration would put
emphasis on a specific algorithm, quickly changing with a
new configuration the next millisecond. This called for the
need for independent possibilities for parallelization of each
of the seven main algorithms, in order to continuously keep
the processing latency at a minimum. This dynamicity in
the control of invocation of algorithms decided in great ex-
tent the interfaces between the two identified domains.

5. CASE STUDY

5.1 Context
The application chosen for our case study was part of a

larger Ericsson testbed project, already involving legacy and
new software and hardware, and also new features. The
testbed mainly involved 4G telecommunication baseband
functionality, based on Ericsson’s existing LTE products,

3http://www.uml.org/

Figure 2: A schematic representation of how the
state machines in the control domain cooperate with
the independent algorithms of the signal processing
domain.

both base station parts and user equipment parts. The
testbed included adding features as well as deploying appli-
cations on a new hardware platform, resulting in an LTE-A
[8] prototype to be presented at the Mobile World Congress
in Barcelona, February 2011. Due to compiler availability
for the new hardware the model transformations were re-
stricted to generate C code.

The testbed project lasted for over one year. Already
from the beginning it was emphasized that delivering an ap-
plication that fulfilled the requirements within the calender
deadline was more important than using specific methods
and languages. There were no intentions of reusing anything
of what the modelling could bring, except perhaps from the
experienced gained.

5.2 Domain Identification
The application considered in this project was identified

as a self-contained software component, managing a specific
part of the data flow in an LTE-A base station, see Figure
2. The component’s external interfaces were well specified,
both in terms of parameter interchange and real-time re-
sponsibilities. The application was to be periodically pro-
vided with incoming data, while independently requested to
update its configuration regarding how to process the data.
Upon external triggering in one of these ways the control
domain initiated internal chains of signal processing which
were expected to run to completion.

5.2.1 Modelling Signal Processing using Feldspar
It was decided that it would be a good opportunity to

test Feldspar by modelling the signal processing. There were
other options, such as MatLab4, but we wanted to take the
opportunity to evaluate Feldspar’s capability for modelling
signal processing in a sharp project.

5.2.2 Modelling Control using xtUML
Ericsson has previously had success in using xtUML for

reuse of platform-independent models [1] and test genera-
tion [6] while still finding the tool easy enough to use by

4http://www.mathworks.se/products/matlab/

novice modellers [4]. We also know from experience that xt-
UML integrates nicely with legacy code written in C. Since
the models are executable it is possible for users to vali-
date that the models have the required functionality with-
out generating code for deployment. Ericsson also had an
in-house xtUML-to-C transformer that could compete with
hand-written code [26]. And it was decided that one new
modelling language was enough considering the firm dead-
line of the project. BridgePoint5 was chosen as tool for mod-
elling xtUML.

5.2.3 Modelling the Interface between the Domains
The interface between the two domains was defined in an

implementation language independent way, identifying pa-
rameters necessary for describing the algorithmic and par-
allelization needs of the different algorithms within the data
processing chain. Lochmann and Hessellund refer to such
an implementation-independent interface as semantic [18].
The functionality of the interface was analysed using activ-
ity diagrams which was then manually transformed into C
code.

5.3 Developers
The people involved in the project had been working be-

tween 5 to 15 years each with layer one baseband signal pro-
cessing in telecommunication equipment at Ericsson. Mainly
three developers were involved in the implementation of the
models, two implementing the signal processing domain us-
ing Feldspar and one developer using xtUML for implement-
ing the control domain. The developers had an unusual com-
bination of expertise in that they were both domain experts
and proficient C coders. In addition to the implementors,
there was one domain expert in designing signal processing
algorithms linked to the project as well as two experts in
model transformations; one transformation expert for each
modelling language. These two also served as mentors in
respective modelling language. Two academic researchers
participated as observers throughout the whole project.

The domain experts had chosen to participate in the project
themselves. They had also chosen the modelling languages
to use for implementing their domains. Their knowledge of
C was a key reason for attempting to use a new modelling
language, if Feldspar did not deliver it would always be pos-
sible to revert to the old ways and implement the signals
using C. The motivation and commitment of the developers
towards the project was one of the reasons that the project
delivered a successful application.

5.4 Operation
The operation of the project was done in a Scrum way6,

using a backlog and in each sprint there were daily meetings
and a burn down chart. After the end of each sprint there
was a sprint review and delivery.

The testbed was horizontally decomposed [12] into a con-
trol and a signal processing domain according to the do-
main identification. The control domain was viewed as one
autonomous component while the algorithms were devel-
oped as components of their own residing inside the con-
trol component. The implementation was done following a
component-based development principle [13]. Our choice of

5http://www.mentor.com/products/sm/model_
development/bridgepoint/
6http://www.scrum.org/scrumguides/

language for each domain enabled testing of each software
component independently and continuously throughout the
implementation. When the implementation was complete
the models were transformed into source code through code
generation.

6. RESULTS
From the outcome of the case study we can now answer the

challenges in section 3 in the order they were specified; first,
to which extent is it possible to independently implement
the domains? and secondly, how can the sub-solutions be
integrated and deployed to constitute a running application?

6.1 Independent Implementation and Valida-
tion of the Domains

Working independently in the two modelling languages
went well. The Feldspar models for the algorithms in the
signal processing domain were implemented independently.
Since the signal processing consisted of discretely imple-
mented algorithms, they could be verified independently,
processing premade input data, and comparing the output
with likewise premade output data using the Haskell inter-
preter.

Simultaneously and independently, the xtUML models for
the control domain could be implemented and tested. For
the places where functionality defined in Feldspar were to
be called from xtUML, stubs defined using action language
were used within the executable control domain model, in
order to verify the complete control flow; albeit not in a
complete real-time aspect.

The designers implementing in Feldspar found it suitable
for writing mathematical expressions, although it took some
time to get used to the Feldspar syntax. There was initially
only limited support for fixed-point arithmetics which is an
important notion within the domain and the Haskell syn-
tax for representing state was not intuitive compared to the
mathematical formulation. The mapping from the mathe-
matical notation of one of the algorithms into Feldspar code
was done by the Feldspar mentor since it was not possible
for the domain experts to do.

Using xtUML was straight-forward when modelling the
solution for the control domain. Activity diagrams would
have been preferable, since they would better describe the
parallel execution of the signals than the state machines.
The solution in our case was to model the control domain
basic structure as activity diagrams outside the xtUML tool,
in order to understand how to translate the behavior using
the state machine diagrams provided by xtUML.

6.2 Integrating the Domain Solutions
Defining the interfaces required iteration over several meet-

ings where the interfaces had to be refined and adapted due
to extensions and changes on the functionality in the require-
ments. Since the understanding of the requirements on the
interface increased during the implementation of the sepa-
rate domains. These refinements were handled through the
agile principles7 inherent in the Scrum development process.

Testing the full interaction between the Feldspar and xt-
UML models required that they first were transformed into
C code. The generated code was then validated before be-
ing deployed on the delivered hardware. Due to performance

7http://agilemanifesto.org/principles.html

limitations some hand-written C code with added intrinsics
was necessary when deploying the generated code to max-
imise the usage of the platform-specific properties. Under
the time constraints of the project this was quicker than
updating the existing transformations [14].

7. DISCUSSION

7.1 The Right Language for the Right Task
The Feldspar developers needed time to get used to writ-

ing Feldspar code due to the design of the language. The au-
thors of Feldspar claim that it is a domain-specific language
for signal processing. Often, when developing a domain-
specific language, one starts with the syntax used by the
domain experts, which in our case would have been mathe-
matical expressions for signal processing. This was not the
case for Feldspar, since it is deliberately defined to have as
similar syntax as possible as Haskell. Even though the gap
between signal processing algorithms and Feldspar is a lot
smaller than between signal processing algorithms and C
there is still a gap. Moreover, Feldspar was a new language
to learn for the domain experts and it belongs to a different
programing paradigm than C which they were used to. The
problem was limited by the fact that one of the people work-
ing in the Feldspar project was part of the group during the
initial phase of the project.

From our experience of xtUML [4] it does not take that
long time to get used to the syntax of the modelling ele-
ments, as it does to get used to the tool that creates them.
More importantly, as the project evolved we saw a need for
handling the data flow in a way that neither xtUML nor the
existing platform supported.

7.2 Multicore
At the time of our project there was no way to generate ef-

ficient code for multicore deployment, neither from Feldspar
nor from xtUML, so we opted to implement the interface
in C straight away. However, both languages chosen for its
respective domain suggested suitable inherent properties for
such a transformation to be plausible in many aspects. The
feature of Feldspar functions having no side effects, together
with designing the algorithms as a library of dynamically
composable low-level operations would be well suited for ex-
ecution in a distributed and concurrent manner. And imple-
menting dynamically created independent instances of state
machinery in xtUML would only benefit from being run as
distributed and concurrent threads in a multicore environ-
ment.

Exploiting properties already naturally inherent within
the domain languages, when transforming the domain mod-
els into generated code, would therefore render it possible to
generate code suitable for multicore deployment - for free,
so to speak. Naturally it would require considerately more
development by the transformation experts to customise the
transformations in order to obtain optimal performance for
a specific platform.

8. CONCLUSION AND FUTURE WORK
In relation to previous work we chose not to unify the

metamodels of the modelling languages since we did not have
straight access to the xtUML metamodel. Instead we relied
on the identification of a logical interface between the dif-
ferent domains and modelling languages. In this aspect our
work is related to the findings reported by Lochmann and
Hessellund [18]. By adhering to an agile and component-
based development strategy [13] and through the separa-
tion of concerns [10] between the domains, the referential
integrity is ensured through the interface between the do-
mains [23]. In comparison to the work at Motorola [7, 31]
we have used an in-house modelling language to implement
the signal processing.

The development process relied on the possibility to val-
idate the domains independently. For this to be possible
it is important that the modelling languages are executable
in their own right and that they later on can be translated
into deployable code, after the models have been validated
to have the right structure and behaviour [23].

We believe that multicore is both a challenge and an op-
portunity for model-driven software development. Multi-
core is a complex paradigm of its own and if the platform-
independent properties of software modelling could be com-
bined with efficient code generation a lot would be won.

9. REFERENCES
[1] S. Andersson and T. Siljamäki. Proof of Concept -

Reuse of PIM, Experience Report. In SPLST’09 &
NW-MODE’09: Proceedings of 11th Symposium on
Programming Languages and Software Tools and 7th
Nordic Workshop on Model Driven Software
Engineering, Tampere, Finland, August 2009.

[2] E. Axelsson, K. Claessen, G. Dévai, Z. Horváth,
K. Keijzer, B. Lyckeg̊ard, A. Persson, M. Sheeran,
J. Svenningsson, and A. Vajdax. Feldspar: A domain
specific language for digital signal processing
algorithms. In Formal Methods and Models for
Codesign (MEMOCODE), 2010 8th IEEE/ACM
International Conference on, pages 169 –178, July
2010.

[3] E. Axelsson, K. Claessen, M. Sheeran,
J. Svenningsson, D. Engdal, and A. Persson. The
Design and Implementation of Feldspar – An
Embedded Language for Digital Signal Processing. In
Proceedings of the 22nd international conference on
Implementation and application of functional
languages, IFL’10, pages 121–136, Berlin, Heidelberg,
2011. Springer-Verlag.

[4] H. Burden, R. Heldal, and T. Siljamäki. Executable
and Translatable UML – How Difficult Can it Be? In
APSEC 2011: 18th Asia-Pacific Software Engineering
Conference, Ho Chi Minh City, Vietnam, December
2011.

[5] S. Burmester, H. Giese, J. Niere, M. Tichy, J. P.
Wadsack, R. Wagner, L. Wendehals, and A. Zündorf.
Tool integration at the meta-model level: the Fujaba
approach. International Journal on Software Tools for
Technology Transfer (STTT), 6:203–218, 2004.

[6] F. Ciccozzi, A. Cicchetti, T. Siljamäki, and
J. Kavadiya. Automating test cases generation: From
xtUML system models to QML test models. In

MOMPES: Model-based Methodologies for Pervasive
and Embedded Software, Antwerpen, Belgium,
September 2010.

[7] T. Cottenier, A. van den Berg, and T. Elrad. Motorola
WEAVR: Aspect and Model-Driven Engineering.
Journal of Object Technology, 6(7):51–88, August
2007. Aspect-Oriented Modeling.

[8] E. Dahlman, S. Parkvall, and J. Sköld. 4G:
LTE/LTE-Advanced for Mobile Broadband. Academic
Press. Elsevier/Academic Press, 2011.

[9] T. Denton, E. Jones, S. Srinivasan, K. Owens, and
R. W. Buskens. NAOMI — An Experimental Platform
for Multi—modeling. In Proceedings of the 11th
international conference on Model Driven Engineering
Languages and Systems, MoDELS ’08, pages 143–157,
Berlin, Heidelberg, 2008. Springer-Verlag.

[10] E. W. Dijkstra. EWD 447: On the role of scientific
thought. Selected Writings on Computing: A Personal
Perspective, pages 60–66, 1982.

[11] R. Filman, T. Elrad, S. Clarke, and M. Aksit.
Aspect-Oriented Software Development.
Addison-Wesley Professional, first edition, 2004.

[12] H. Giese, S. Neumann, O. Niggemann, and B. Schätz.
Model-Based Integration. In H. Giese, G. Karsai,
E. Lee, B. Rumpe, and B. Schätz, editors,
Model-Based Engineering of Embedded Real-Time
Systems, volume 6100 of Lecture Notes in Computer
Science, chapter 2, pages 17–54. Springer
Berlin/Heidelberg, 2011.

[13] G. T. Heineman and W. T. Councill, editors.
Component-based software engineering: putting the
pieces together. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2001.

[14] R. Heldal, H. Burden, and M. Lundqvist. Limits of
Model Transformations for Embedded Software. In
35th Annual IEEE Software Engineering Workshop,
Heraklion, Greece, October 2012. IEEE.

[15] A. Hessellund, K. Czarnecki, and A. W ↪asowski.
Guided Development with Multiple Domain-Specific
Languages. In G. Engels, B. Opdyke, D. Schmidt, and
F. Weil, editors, MoDELS’07: Model Driven
Engineering Languages and Systems, volume 4735 of
Lecture Notes in Computer Science, pages 46–60.
Springer Berlin / Heidelberg, 2007.

[16] G. Kainz, C. Buckl, S. Sommer, and A. Knoll.
Model-to-Metamodel Transformation for the
Development of Component-Based Systems. In
D. Petriu, N. Rouquette, and y. Haugen, editors,
Model Driven Engineering Languages and Systems,
volume 6395 of Lecture Notes in Computer Science,
pages 391–405. Springer Berlin / Heidelberg, 2010.

[17] C. Larman. Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and Design
and Iterative Development (3rd Edition). Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2004.

[18] H. Lochmann and A. Hessellund. An Integrated View
on Modeling with Multiple Domain-Specific
Languages. In Proceedings of the IASTED
International Conference on Software Engineering,
pages 1–10. ACTA Press, February 2009.

[19] S. J. Mellor and M. Balcer. Executable UML: A
Foundation for Model-Driven Architectures.

Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[20] P. J. Mosterman and H. Vangheluwe. Computer
Automated Multi-Paradigm Modeling: An
Introduction. SIMULATION: The Society for
Modeling and Simulation International, 80(9):433–450,
September 2004.

[21] C. Nentwich, W. Emmerich, and A. Finkelstein.
Consistency management with repair actions. In
Proceedings of the 25th International Conference on
Software Engineering, ICSE ’03, pages 455–464,
Washington, DC, USA, 2003. IEEE Computer Society.

[22] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Commun. ACM,
15(12):1053–1058, December 1972.

[23] C. Raistrick, P. Francis, J. Wright, C. Carter, and
I. Wilkie. Model Driven Architecture with Executable
UMLTM. Cambridge University Press, New York, NY,
USA, 2004.

[24] C. Rodŕıguez, M. Sánchez, and J. Villalobos.
Metamodel Dependencies for Executable Models. In
J. Bishop and A. Vallecillo, editors, TOOLS (49),
volume 6705 of Lecture Notes in Computer Science,
pages 83–98. Springer, 2011.

[25] S. Shlaer and S. J. Mellor. Object lifecycles: modeling
the world in states. Yourdon Press, Upper Saddle
River, NJ, USA, 1992.

[26] T. Siljamäki and S. Andersson. Performance
Benchmarking of real time critical function using
BridgePoint xtUML. In NW-MoDE’08: Nordic
Workshop on Model Driven Engineering, Reykjavik,
Iceland, August 2008.

[27] J. Sprinkle, B. Rumpe, H. Vangheluwe, and G. Karsai.
Metamodelling. In H. Giese, G. Karsai, E. Lee,
B. Rumpe, and B. Schätz, editors, Model-Based
Engineering of Embedded Real-Time Systems, volume
6100 of Lecture Notes in Computer Science, chapter 3,
pages 57–76. Springer Berlin/Heidelberg, 2011.

[28] L. Starr. Executable UML: How to Build Class Models.
Prentice Hall PTR, Upper Saddle River, NJ, USA,
2001.

[29] A. Vallecillo. On the Combination of Domain Specific
Modeling Languages. In T. Kühne, B. Selic, M.-P.
Gervais, and F. Terrier, editors, ECMFA, volume 6138
of Lecture Notes in Computer Science, pages 305–320.
Springer, 2010.

[30] J. Warmer and A. Kleppe. Building a Flexible
Software Factory Using Partial Domain Specific
Models. In Sixth OOPSLA Workshop on
Domain-Specific Modeling (DSM’06), pages 15–22,
Jyvaskyla, October 2006. University of Jyvaskyla.

[31] T. Weigert and F. Weil. Practical Experiences in
Using Model-Driven Engineering to Develop
Trustworthy Computing Systems. Sensor Networks,
Ubiquitous, and Trustworthy Computing, International
Conference on, 1:208–217, 2006.

